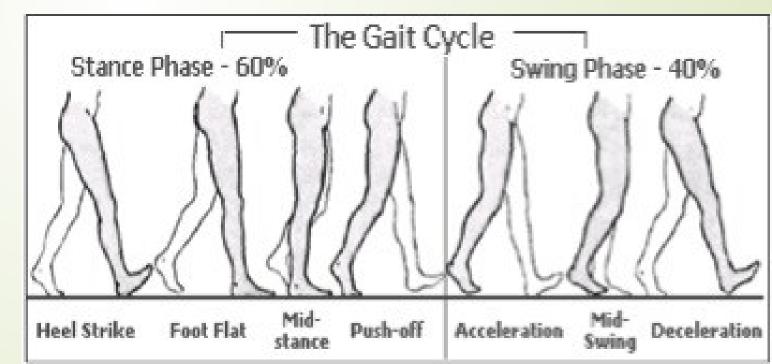
Orthopedic Concerns in Runners

Jennifer Volberding PhD, LAT, ATC

Associate Professor

Athletic Training Program Director

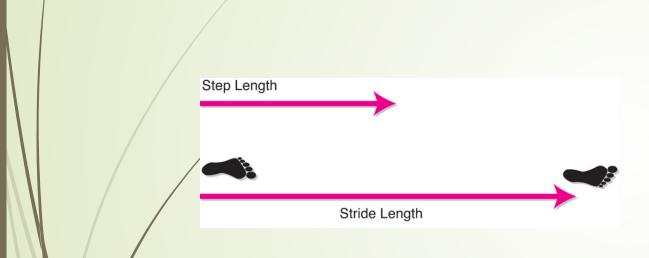
Oklahoma State University Center for Health Sciences


Disclosure

I have no relevant financial relationships or affiliations with commercial interested to disclose.

Learning Objectives

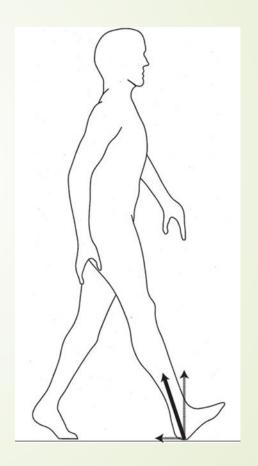
- Discuss differences in walking and running gait
- Identify the most common injuries in runners
- Discuss rehabilitation recommendations for these injuries
- Identify training recommendations for runners
- Discuss barefoot running


Gait Review

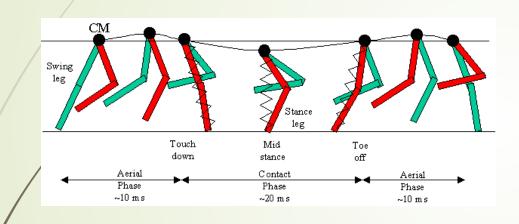
Gait Terminology

- Cadence number of steps taken per unit time (i.e., steps per minute)
- Adults average = 107 +/- 2.7 steps per minute
- Velocity distance covered per unit time (i.e., m/sec)
- Gait velocity meters per second
- Gait cadence steps per minute

Gait Terminology

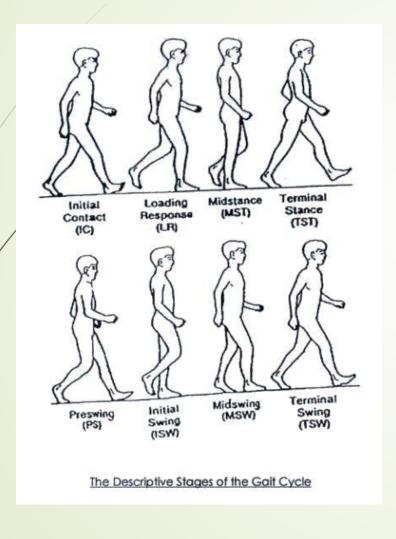

- Stride time time required to complete a single stride
- Stride length linear distance covered in one stride

Gait Terminology


Ground reaction force (GRF)

Contact of the foot with the ground creates force yielding vertical, anteroposterior (A/P), and mediolateral (M/L) components Center of pressure (CoP)

Shows the path of the pressure point under the foot during gait



Walking Gait Phases

- Efficient gait
 - Minimal side-to-side motion
 - Maximal forward motion
 - Body rises and falls approx. 5 cm
- Center of gravity
 - Path is a sinusoidal curve

8 Phases of Gait

- Weight Acceptance
 - Initial Contact
 - Loading Response
- Single Limb Support
 - Mid Stance
 - Terminal Stance
- Limb Advancement
 - Pre-Swing
 - Initial Swing
 - Mid Swing
 - Terminal Swing

Running Gait Cycle

Differences from walking gait
Flight phase — neither foot is in
contact with a supportive surface
No period of double limb support
Vertical GRF

- \bigcirc 2.0 6.0 x the body weight
- Stance phase time

- As speed increases there are changes in
 - Arm swing
 - Stride length
 - Cadence
 - Knee flexion ROM
 - Muscular force
 - Speed of contraction
 - Less up and down motion

What Leads to Running Injuries?

Injury Rates

- 27-70% of recreation and competitive distances runners experience at least 1 injury per calendar year^{1,4,6,7}
 - ► Knee most common 42%
 - Patellofemoral
 - ► Foot, ankle, low leg 40%

Predictors

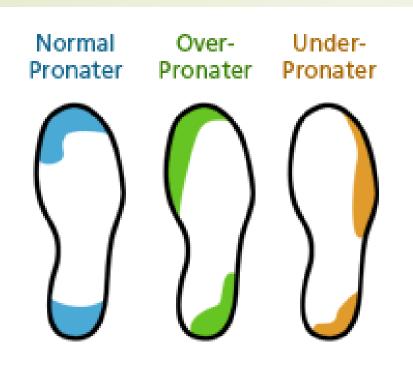
- Previous history^{4,9,10,15,17}
- Lack of experience^{4,18}
 - Too much too soon¹
- Distance^{1,4,9,10,15,17}
 - More than 40 miles per week¹⁰
- Intensity^{1,4}
- Frequency¹⁷
- Shoes/speed/surface^{8,10}
- Gender
 - Men: BMI⁴
 - Women: Hip IROT, Navicular Drop, Q angle^{4,5,17}

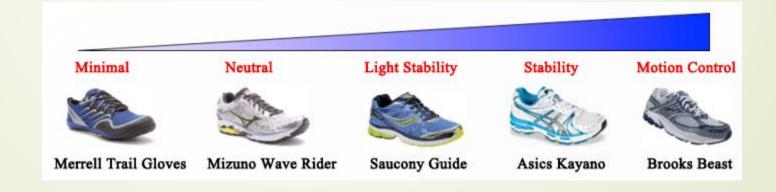
Anatomical and Biomechanical Causes

- Foot Posture^{6,10}
- Hip Strength^{6,8,9}
- Q Angle^{5,6,9}
- → Hip IROT^{5,6,9}
- Genu Valgum^{5,6,9}
- ► Leg Length^{8,10}
- Kinematics⁸

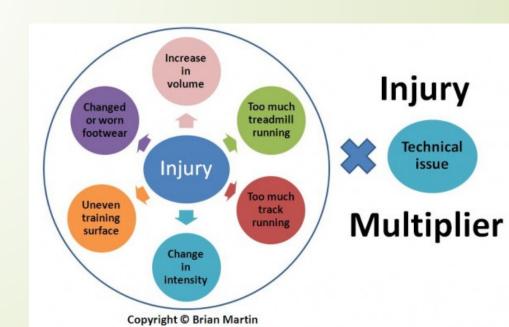
Influence of Foot Structure on Pathology

- Pes planus
 - "Flat feet"
 - Talus tilts medially
 - Navicular displaces inferiorly

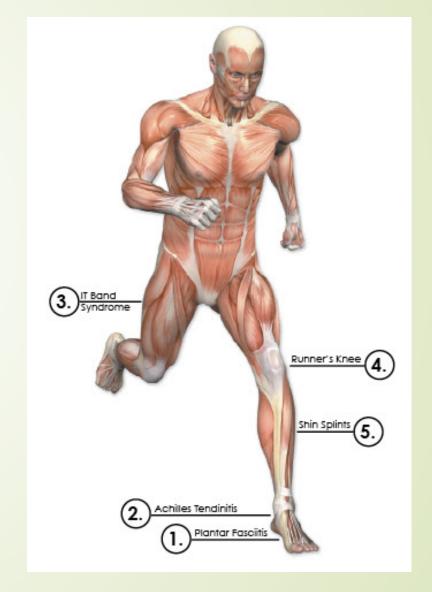



Influence of Foot structure on pathology

Pes cavus


- High medial longitudinal arch
- Decreased ground contact area
- Calluses formation over the PIP joints
- Soft orthotics

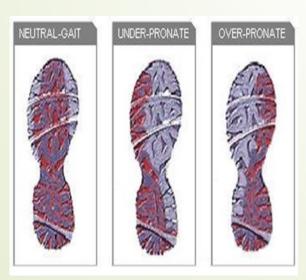
Common Training Errors

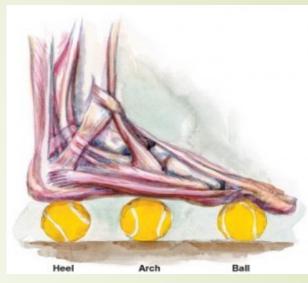

- ► 60% of injuries due to training errors^{1,10}
- 60% related to distance and intensity^{2,15}
 - More than 2 long runs per week⁹
- Surface²

Common Injuries and Rehabilitation Interventions

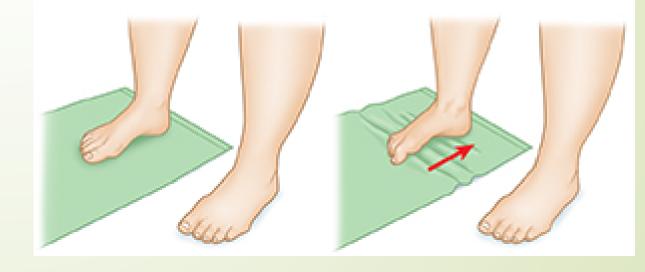
Most Common Injuries^{1,5,6,7,8,10}

- Patellofemoral Pain Syndrome
- Stress Fractures
- Medial Tibial Stress Syndrome
- Patella Tendonitis
- Plantar Fasciitis
- Achilles Tendonitis
- IT Band Syndrome


Plantar Fasciitis


- Inflammatory or degenerative
 - Fasciosis: the noninflammatory degeneration of fascia
- Many causes
- Signs and symptoms
 - Pain on medial calcaneal tubercle
 - Pain when stepping out of bed in the morning
 - Pain in heel after activity

- Plantar fascia rupture
 - MOI: forced ankle DF and toe extension
- Signs and symptoms
 - Difficulty WB
 - "Tearing" sensation
 - Swelling around medial calcaneal tubercle
 - Acute hammer toe


Plantar Faciitis Rehabilitation Suggestions

- Evaluate shoes
- Consider orthotics
- Roll on ball or frozen water ball
- Calf stretching (knee straight and flexed)
- Toes crunches

Towel Toe Curls

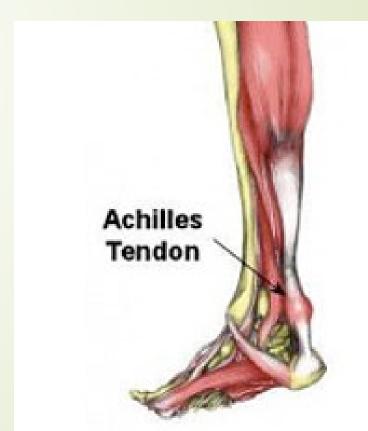
Stress Fracture

Evaluation

- Accumulation of microtraumatic forces
- Pain increases with activity and decreases with rest
- Pain at night
- Can occur at the tibia, fibula and talus
- Special Tests:
 - Bone scan

Rehabilitation

- REST
- Cross Train
- Consider underlying physiological factors
 - Menstrual status
 - Dietary status


Achilles Tendon Strain or Rupture

- MOI
 - DF and eccentric contraction
 - PF and concentric contraction
- Signs and Symptoms
 - Dependent upon severity
 - 3rd degree loud pop and deformity
- Special Tests
 - Thompson test
 - Inability to perform calf raise

Rehabilitation of Achilles Pathologies

- STRETCHING!!!
- Look at the heel counter of shoe for rubbing
- Cross friction massage
- Strengthen calf

Compartment Syndrome

Evaluation

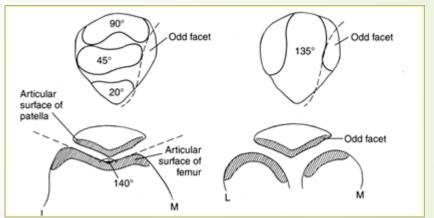
- Acute or chronic
 - Chronic call occur in all 4 compartments
 - Anterior and lateral typically occur together
- MOI:
 - Excessive exercise performed Signs and Symptoms
 - Extreme pain
 - Muscle is hard like bone
 - Paine and pressure felt during exercise
 - Glossy skin
- Special Test
 - Pressure gauge

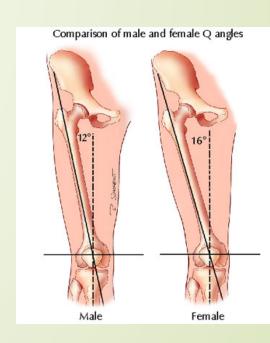
Intervention

- Surgical fasciotomy
- Orthotics

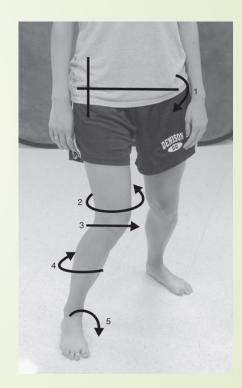
Medial Tibial Stress Syndrome

Evaluation


- Periostitis at the posterior border of the tibia
- Caused by:
 - Repetitive use
 - Training errors
 - Increasing load too quickly
 - Muscle fatigue
 - Incorrect shoes
 - Biomechanical abnormalities

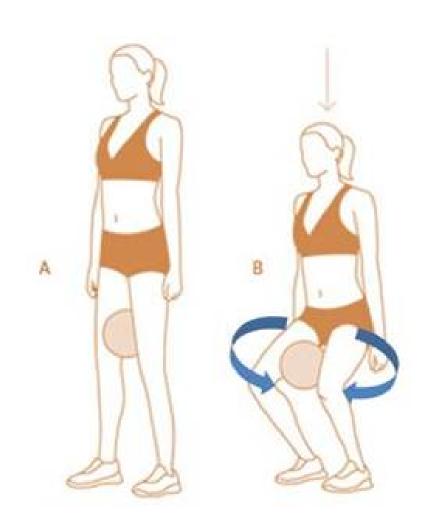

Intervention

- Shoes/orthotics
- Soft tissue along medial tibial border and posterior tibialis origin
- Strenghening


Contributors to Patellofemoral pain^{3,6}

- Contralateral hip drop
- IROT of femur
- Valgus knee
- IROT of tibia
- Foot pronation

Table 11–3. Structural Abnormalities and Their Resultant Forces and Biomechanical Changes	
ALIGNMENT	RESULTING FORCES AND BIOMECHANICAL CHANGES
Genu varum	Increased compressive forces on the medial tibiofemoral articulating surfaces
	Tensile forces on the lateral tibiofemoral soft tissue structures and LCL
	Quadriceps exerting medially directed forces on the patella
	Compressive forces on the lateral facet
	Stretching of the lateral patellar restraints
Genu valgum	Increased compressive forces on the lateral tibiofemoral articulating surfaces
	Tensile forces on the medial tibiofemoral ligaments
	Quadriceps exerting laterally directed forces on the patella
	Compressive forces on the odd and medial facets
	Stretching of the medial patellar restraints
Increased Q angle	Lateral tracking of the patella
or lax medial	Compressive forces on the lateral facet
restraints	Stretching of the medial patellar restraints
Decreased Q angle	Medial tracking of the patella
or lax lateral	Compressive forces on odd and medial facets
restraints	Stretching of the lateral patellar restraints
Genu recurvatum	Decreased compressive forces in terminal knee extension



Patellofemoral Pain Syndrome

- MOI
 - Gradual onset due to change in surface, activity level, or intensity.
 - Change in footwear
- Signs and Symptoms
 - Increased Q angle, patella alta, baja
 - Think hip and foot predispositions
 - Pain at medial knee and facets
- Special Tests:
 - Ober's
 - Navicular drop

Interventions for PFPS

- Strengthen VMO
- Eccentric training
- Stretching
- Bolstered knee brace
- Shoes/orthotics

Patellar Tendinopathys

- MOI
 - Repeated knee extension
 - Increase in activity
 - jumping
- Signs and Symptoms
 - Crepitus
 - Inflammation on either end of patella tendon
 - Swelling
 - Thickening of the tendon

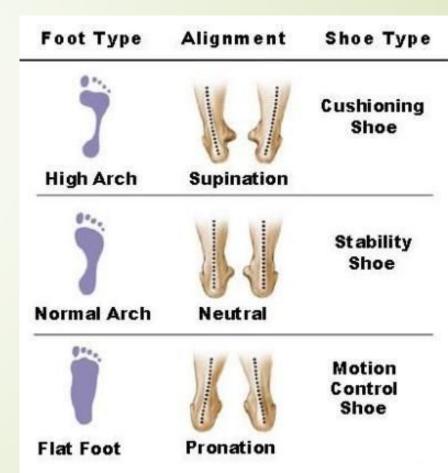
- Rehabilitation
 - Cho Pat/Patella Tendon Strap
 - Eccentric strengthening

IT Band Friction Syndrome

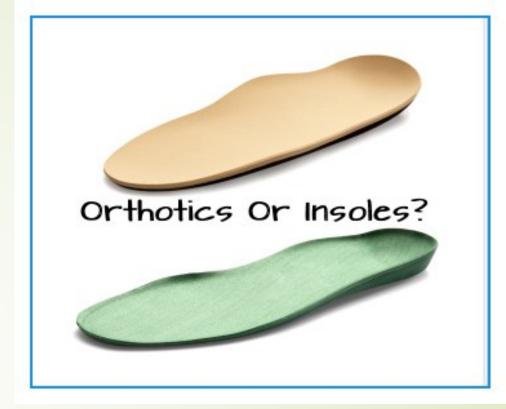
- Friction between the IT band and lateral femoral epicondyle
- Repeated knee flexion sports
- Management
 - Correct biomechanical issues
 - Decrease inflammation
 - Proprioceptive exercises
 - Strengthening exercises

- MOI:
 - Repeated knee flexion and extension
- Signs and Symptoms:
 - Pain over lateral femoral condyle
 - Pain increased with running downhill
 - Genu varum
 - Excessive pronation
 - Leg-length discrepancy
- Special Tests:
 - Ober's
 - Noble's

Rehabilitation of IT Band Syndrome


- Stretching
- Foam Roller
- ID biomechanical issues
- Cross training

Training Recommendations


Shoes

- Critical to reduce injuries^{1,10}
- Replace every 300-430 miles²
- Neutral to stability for hyper pronators¹¹

Orthotics

- 70% of patients response positively to orthotics²
- Prevent stress fractures¹0
- Breaking in process is ESSENTIAL

Distance/Intensity

- Less than 40 miles per week^{10,12}
- Novice should should run no more than 45 minutes per outing¹²
- 8 week training protocol has been demonstrated to be most effective¹²

Frequency

- 2-5 runs per week¹²
- 24-48 hours of rest between runs²
- Increasing step rate can decrease patellofemoral forces by 14%¹⁴

Surface

- Key is cross training between surfaces²
- Running Routine
- Those with PFPS and MTSS should avoid hard surfaces²
- Those with PFPS and ITBS should avoid hills²

Cross Training

- Strengthening^{2,10}
 - Eccentric quadriceps
 - Hip abduction (gluteus medius)
- Plyometrics increase performance¹⁶

How Does a Novice Runner Begin??

- Use the 10% Rule^{3,12}
 - Initial goal should be run 30 minutes
 - Then to run 2 miles non-stop regardless of time
 - Most novice running programs run 5-8 weeks
 - No noted differences between 8 and 13 week programs¹²
- Start no more than 3 times per week running/walking
- Stretch afterwards
- Cross Train
- REST!

Novice Walk-Run Program²

Table 1. Sample walk-run program: The walk-run program is started after a patient has demonstrated the ability to walk 30 minutes consecutively without injury 3 times weekly on alternate days. The goal is to run pain-free for 30 minutes 3 times weekly. It involves a total activity period of 30 minutes structured into six sets of 5 minutes on alternate days. In each set, there is a combination of running and walking where the run component is increased after each session by 30 seconds.

WEEK	MONDAY	WEDNESDAY	FRIDAY
1	10-min walk	20-min walk	30-min walk
2	6x (4.5-min walk + 0.5-min run)	6x (4-min walk + 1-min run)	6x (3.5-min walk + 1.5-min run)
3	6x (3-min walk + 2-min run)	6x (2.5-min walk + 2.5-min run)	6x (2-min walk + 3-min run)
4	6x (1.5-min walk + 3.5-min run)	6x (1-min walk + 4-min run)	6x (0.5-min walk + 4.5-min run)
5	30-min run	30-min run	30-min run

What about Barefoot Running????

Barefoot Running

- High tech running shoes didn't appear until 1970
- Shod = heavy heel strike
- Barefoot = midfoot or forefoot strike

Barefoot Running

- Shorten Stride¹⁰
 - Decreases risk of stress fractures
- Increase step count
 - ► 600 strikes/KM¹³

References

- 1. Hreljac, A. Etiology, prevention, and early intervention of overuse injuries in runners: A biomechanical perspective. *Phys Med Rehabil Clin N Am* 2005;16:651-667.
- 2. Johnston, CAM, Taunton, JE, Lloyd-Smith, DR, McKenzie, DC. Preventing running injuries: Practical approach for family doctors. Can Fam Physician 2003;49:1101-1109.
- 3. Lieberman, DE. What can we learn about running from barefoot running: An evolutionary medical perspective. Exerc Sport Sci Rev 2012;40:63-72.
- 4. Buist, I, Bredeweg, SW, et al. Predictors of running-related injuries in novice runners enrolled in a systematic training program: A prospective cohort study. Am J Sports Med 2010;38:273-280.
- 5. Thijs, Y, Pattyln, E, et al. Is hip muscle weakness a predisposing factor for patellofemoral pain in female novice runners? A prospective study. Am J Sports Med 2011;39:1877-1882.
- Ferber, R, Hreljac, A, Kendall, KD. Suspected mechanisms in the cause of overuse running injuries: A clinical review. Clin Biomech 2003;158:350-357.
- 7. Dias Lopes, A, Hespanhol Junior, LC, Yeung, SS, Pena Costa, LO. What are the main running-related musculoskeletal injuries? A systematic review. Sports Med 2012;42:891-905.
- 8. van der Worp, MP, van der Horst, N, de Wijer, A, Backx, FJG, Nijhuis-van der Sanden, MWG. Iliotibial band syndrome in runners: A systematic review. *Sports Med* 2012;42:969-922.
- 9. van Gent, BRN, Siem, DD, van Middelkoop, M, van Os, TAG, Bierma-Zienstra, SSMA, Koes, BBW. Incidence and determinants of lower extremity running injuries in long distance runners. *Br J Sports Med* 2007.

References

- 10. Fields, KB, Sykes, JC, Walker, KM, Jackson, JC. Prevention of running injuries. Curr Sports med Rep 2010;9:17-182.
- 11. Oestergaard Nielsen, R, Buist, I, Thorlaund Parner, E, Aagaard Norhr, E, Sorensen, H, Lind, M, Rassmussen, S. Foot pronation is not associated with increased injury risk in novice runners wearing a neutral shoe: A 1-year prospective cohort study. Br J Sports Med 2014;48:440-447.
- 12. Oestergaard Nielsen, R, Buist, I, Sorensen, H, Lind, M,Rasmussen, S. Training errors and running related injuries: A systematic review. Int J Sports Phys Ther 2012;7:58-75.
- 13. Lieberman, DE, Venkadesan, M, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners.

 Nature 2010:463:531-536.
- 14. Lenhard, RL, THelen, DG, Wille, CM, Chumanov, ES, Heiderscheit, BC. Increasing running step rate reduces patellofemoral joint forces. *Med Sci Sports Exerc.* 2014;46:557-564.
- 15. Hespanhol, LC, Pena Costa, LO, Dias Lopes, A. Previous injuries and some training characteristics predict running-related injuries in recreational runners: A prospective cohort study. *J Physiotherapy* 2013;59:263-269.
- 16. Turner, AM, Owings, M, Schwane, JA. Improvement in running economy after 6 weeks of plyometric training. *J Strength Conditioning Research* 2003;17:60-67.
- 17. Tirotti Sragoptto, B, et al. What are the main risk factors for running-related injuries? Sports Med 2014;44:1153-1163.
- 18. Videbaek, S, Moeballe Bueno, A, Oestergaard Nielen, R, Rasmussen, S. Incidence of running-related injuries per 1000 h of running in different types of runners: A systematic review and meta-analysis. Sports Med 2015;45:1017-1026.